Thứ Bảy, 19 tháng 4, 2014

casyopée và việc dạy học khái niệm hàm số trong môi trường tích hợp nhiều cách biểu diễn hàm số


LINK DOWNLOAD MIỄN PHÍ TÀI LIỆU "casyopée và việc dạy học khái niệm hàm số trong môi trường tích hợp nhiều cách biểu diễn hàm số": http://123doc.vn/document/1052498-casyopee-va-viec-day-hoc-khai-niem-ham-so-trong-moi-truong-tich-hop-nhieu-cach-bieu-dien-ham-so.htm



Theo Brousseau : “Trong tình huống didactic, môi trường là hệ thống đối kháng với HS, tức là cái
làm thay đổi tình trạng của kiến thức theo cách mà HS không kiểm soát được”. Các yếu tố hình thành
nên môi trường có thể là vật chất hoặc phi vật chất.
Một trong những môi trường tạo sự tương tác hiệu quả đó là môi trường máy tính tích hợp các phần
mềm dạy học. Và phần mềm Casyopée là phần mềm dạy học hàm số do Lagrange (2002) và nhóm
nghiên cứu thuộc trung tâm Nghiên cứu Di
dactic Diddirem (nay là trung tâm Nghiên cứu Didactic
LDAR Đại học Paris VII) phát triển. Một đặc trưng nổi bật của phần mềm này là có hai môđun đại số
và môđun hình học động và kết nối chặt chẽ với nhau. Đây là phần mềm duy nhất nghiên cứu quan hệ
hàm có sự tích hợp của hai mođun đại số và hình học.
Những ghi nhận trên đưa chúng tôi đến với những câu hỏi xuất phát sau :
- Khái niệm hàm số được trình bày như thế nào trong chương trình toán phổ thông Việt Nam ?
- Cách trình bà
y của SGK ảnh hưởng thế nào đến quan niệm của HS về khái niệm hàm số ?
- Vai trò của phần mềm Casyopée đối với việc dạy và học khái niệm hàm số trong môi trường tích hợp
nhiều cách biểu diễn ?

2. Khung lý thuyết tham chiếu
2.1 Lý thuyết nhân chủng học
Trước hết chúng tôi đặt nghiên cứu của mình trong phạm vi của lý thuyết nhân chủng học. Tại
sao lại là lý thuyết nhân chủng học ? Bởi vì 3 câu hỏi của chúng tôi đều liên quan đến những khái niệm
cơ bản của lý thuyết này
: quan hệ cá nhân, quan hệ thể chế đối với một đối tượng tri thức, và tổ chức
toán học. Dưới đây chúng tôi sẽ trình bày tóm tắt những khái niệm đó và cố gắng làm rõ tính thoả đáng
của sự lựa chọn phạm vi lý thuyết của mình. Để trình bày các khái niệm
này, chúng tôi dựa vào bài
giảng didactic được công bố trong “Những yếu tố cơ bản của didactic Toán
”, sách song ngữ Việt –
Pháp, NXBĐHQG TPHCM 2009.
. Quan hệ cá nhân đối với một đối tượng tri thức
Một đối tượng là một cái gì đó tồn tại ít nhất đối với một cá nhân. Quan hệ cá nhân của một cá
nhân X với một đối tượng tri thức O, ký hiệu R(X,O), là tập hợp những tác động qua lại mà X có thể
có với O. R(X,O) cho biết X nghĩ gì về O, X hiểu như thế nào về O, X có thể thao tác O ra sao.
Theo quan điểm này việc học tập của cá nhân X về đối tượng tri thức O là sự điều chỉnh mối
qua
n hệ của X đối với O. Cụ thể, việc học tập xảy ra nếu quan hệ R(X,O) bắt đầu được thiết lập (nếu
nó chưa từng tồn tại), hoặc bị biến đổi (nếu nó đã tồn tại).
. Quan hệ thể chế đối với một đối tượng tri thức

Thế nhưng, một cá nhân không thể tồn tại lơ lửng ở đâu đó mà luôn luôn phải ở trong ít nhất
một thể chế. Như vậy việc thiết lập hay biến đổi quan hệ R(X,O) phải được đặt trong một thể chế I nào
đó có sự tồn tại của X. Hơn thế giữa I và O cũng phải có một quan hệ xác định.
Hiển nhiên, trong một thể chế I, quan hệ R(X,O) hình thành hay thay đổi dưới các ràng buộc
của R(I,O).
Với những định nghĩa trên thì trả lời cho các câu hỏi xuất phát chính là làm rõ quan hệ của thể
chế I mà chúng tôi quan tâm đối với đối tượng O. Đối tượng O ở đây là ”khái niệm h
àm số”, còn thể
chế dạy học I thì với khuôn khổ luận văn chúng tôi chỉ giới hạn trong phạm vi lớp 10.
Một câu hỏi đặt ra ngay tức thì : làm thế nào để vạch rõ quan hệ thể chế R(I,O) và qua
n hệ cá
nhân R(X,O) ?
. Tổ chức toán học
Hoạt động toán học là một bộ phận của hoạt động xã hội. Do đó, cũng cần thiết xây dựng một
mô hình cho phép mô tả và nghiên cứu thực tế đó. Xuất phát từ quan điểm này mà Chevallard (1998)
đã đưa vào khái niệm praxéologie.
Theo Chevallard, mỗi praxéologie là một bộ gồm 4 thành phần [T, ,

, ], trong đó : T là kiểu
nhiệm vụ,  là kỹ thuật cho phép giải quyết T,

là công nghệ giải thích cho kỹ thuật ,  là lí thuyết
cho

, nghĩa là công nghệ của công nghệ


Một praxeologie mà các thành phần đều mang bản chất toán học được gọi là một tổ chức toán
học
Theo Bosch.M và Chevallard.Y, việc nghiên cứu mối quan hệ thể chế I với một đối tượng tri
thức O có thể được tiến hành thông qua việc nghiên cứu các tổ chức toán học gắn liến với O :
”Mối quan hệ thể chế với một đối tượng [ ] được định hình và biến đổi bởi một tập hợp những nhiệm
vụ mà cá nhân [chiếm một vị trí nào đó trong thể chế này
] phải thực hiện, nhờ vào những kỹ thuật xác
định (tham khảo Bosch và Chevallard, 1999)”
Hơn thế , cũng theo Bosch và Chevallard, việc nghiên cứu các tổ chức toán học gắn liền với O
còn cho phép ta hình dung được một số yếu tố của quan hệ cá nhân của một chủ thể X tồn tại trong O,
bởi vì:
”Chính việc thực hiện những nhiệm vụ khác nhau m
à cá nhân phải làm trong suốt cuộc đời mình trong
những thể chế khác nhau, ở đó nó là một chủ thể (lần lượt hay đồng thời), dẫn tới làm nảy sinh mối
quan hệ cá nhân của nó với đối tượng nói trên”.

Như thế, việc chúng tôi lấy lý thuyết nhân chủng học làm tham chiếu cho nghiên cứu của mình
dường như là hoàn toàn thoả đáng.

2.2 Hợp đồng didactic
Hợp đồng didactic liên quan đến một đối tượng dạy – học là sự mô hình hoá các quyền lợi và
nghĩa vụ ngầm ẩn của giáo viên cũng như của HS đối với đối tượng đó.
”[…] một tập hợp những quy tắc (thường không được phát biểu tường m
inh) phân chia và hạn chế
trách nhiệm của mỗi thành viên, học sinh và giáo viên, về một tri thức được giảng dạy” (Bessot và các
tác giả).
Những điều khoản của hợp đồng tổ chức nên các mối quan hệ giữa Thầy và Trò đối với một tri
thức:
”Hợp đồng chi phối quan hệ giữa thầy và trò về các kế hoạch, các mục tiêu, các quyết định, các hoạt
động và đánh giá sư phạm. Ch
ính hợp đồng chỉ ra ở từng lúc vị trí tương hỗ của các đối tác đối với
nhiệm vụ phải hoàn thành và chỉ rõ ý nghĩa sâu sắc của hoạt động đang được tiến hành, của các phát
biểu hoặc những lời giải thích. Nó là quy tắc giải mã cho hoạt động sư phạm mà mọi sự học tập trong
nhà trường phải trải qua”. (Tài liệu đã dẫn)
Như vậy, khái niệm hợp đồng di
dactic cho phép ta “giải mã“ các ứng xử của GV và HS, tìm ra
ý nghĩa của những hoạt động mà họ tiến hành, từ đó có thể giải thích một cách rõ ràng và chính xác
những sự kiện quan sát được trong lớp học.
Theo định nghĩa trên những yếu tố trả lời cho các câu hỏi xuất phát đều có thể được tìm thấy
qua việc nghiên cứu các quy tắc hợp đồng didactic liên quan đến đối tượng khái niệm h
àm số.

3. Trình bày lại câu hỏi luận văn
Giới hạn trong phạm vi lý thuyết didactic đã chọn, chúng tôi trình bày lại dưới đây những câu
hỏi xuất phát mà việc tìm kiếm các yếu tố cho phép trả lời chúng là trọng tâm nghiên cứu của luận văn
này. Hệ thống câu hỏi của chúng tôi xoay quanh những yếu tố cho phép xác định quan hệ thể chế I
1

(thể chế dạy học toán ở lớp 7), quan hệ thể chế I
2
(thể chế dạy học toán ở lớp 9), quan hệ thể chế I
3
(thể
chế dạy học toán ở lớp 10) với đối tượng O – “khái niệm hàm số”, và quan hệ cá nhân của HS lớp 10
với O.
 Câu hỏi 1 (Q1) : Trong các thể chế đã nêu, O xuất hiện như thế nào ? có những tính chất gì, cho
phép giải quyết những kiểu nhiệm vụ gì ?

 Câu hỏi 2 (Q2) : Dưới tầm ảnh hưởng của các thể chế : trong môi trường giấy bút truyền thống ,
quan hệ cá nhân của học sinh với O diễn ra như thế nào, (cụ thể cá nhân vận hành O giải quyết những
kiểu nhiệm vụ gì ?), bị chi phối bởi những quy tắc hợp đồng nào ?
 Câu hỏi 3 (Q3) : trong môi trường công nghệ thông tin, quan hệ cá nhân đó thay đổi ra sao ? Có
những kĩ thuật và công nghệ toán học mới nà
o được đưa vào để giải quyết các kiểu nhiệm vụ thể chế
đưa ra ?

4. Phương pháp nghiên cứu và cấu trúc luận văn
Luận văn chúng tôi nhắm đền việc tìm những yếu tố trả lời cho câu hỏi nêu trên.
 Đối với câu hỏi Q1, Q2 : chúng tôi sử dụng lại một số các kết quả phân tích quan hệ thể chế được
trình bày trong hai luận văn của thạc sĩ Bùi Thị Ngát và Bùi A
nh Tuấn
 Đối với câu hỏi Q3 : nghiên cứu phần mềm Casyopée
Chúng tôi sẽ trình bày trong chương 2 và thông qua thực nghiệm tìm hiểu mối tương quan của nó và
việc dạy học khái niệm hàm số trong môi trường tích hợp nhiều cách biểu
Cụ thể , trong chương 1 chúng tôi sẽ tổng hợp điều tra khoa học luận về khái niệm hàm số trong hai
luận văn đã đề cập trước đó. Chương 2 chúng tôi sẽ việc nghiê
n cứu mối quan hệ thể chế với khái
niệm hàm số (qua các lớp 7, 9, 10). Chương 3 dành cho phần thực nghiệm và nghiên cứu về phần mềm
Casyopée.
CHƯƠNG 1 : MỘT VÀI TỔNG HỢP ĐIỀU TRA KHOA HỌC LUẬN VỀ
KHÁI NIỆM HÀM SỐ

Chúng tôi tổng hợp lại từ các nghiên cứu khoa học luận trong hai luận văn thạc sĩ của Bùi Anh Tuấn
(2007) và Bùi Thị Ngát (2008).

1.Luận văn của Bùi Thị Ngát
Những giáo trình đại học chủ yếu được chọn để tham khảo trong luận văn này là :
- Toán học cao cấp, tập 1,2,3- của Nguyễn Đình Trí (chủ biên).
- Tuyển tập bài tập toán dành cho các trường đại học kĩ thuật (1)- Đại số tuyến tính và cơ sở giải tích

toán học, NXB KHKT, do A.V.Ephimop, B.P.Đemiđovich biên tập.
Có thể tóm tắt một số điểm chính của luận văn như sau :
 Ba đặc trưng cơ bản của hàm số là : tương ứng, phụ thuộc và biến thiên.
 Biểu diễn hàm số : Trong lịch sử, người ta đã dùng các phương tiện khác nhau như bảng số, hình
hình học, biểu thức giải tích và đồ thị. Kể từ thế kỷ 17, cách biểu diễn bằng hình học rất ít khi xuất
hiện. Cách biểu diễn bằng bảng thường chỉ đư
ợc áp dụng khi tập xác định của hàm số là hữu hạn và
quy tắc tương ứng khó diễn đạt bằng một biểu thức giải tích. Hai cách biểu diễn còn lại vẫn luôn được
ưu tiên.
 Ta có thể nghiên cứu hàm số thông qua đồ thị của nó vì các đặc trưng của hàm số đều được thể
hiện thông qua đồ thị.
Hàm số được cho bằng biểu thức giải tích y = f(x) Đồ thị hàm số y = f(x)
1- Là một phép tương ứng mỗi số thực x
X

với
một số thực f(x)


2- Tập xác định của hàm số là tập rời rạc hay
liên tục


3- Hàm số đồng biến (nghịch biến)
4- Hàm số chẵn
- Hàm số lẻ
5- Hàm số tuần hoàn

1- Là tập hợp những điểm có toạ độ cùng thoả mãn
biểu thức xác định hàm số
- Cắt những đường thẳng cùng phương với Oy tại
không quá m
ột điểm
2- C
ó thể là một tập hợp điểm rời rạc, một đường
cong (liên tục hoặc không liên tục)
- Trong trường hợp đồ thị là đường cong thì đó là
một đường cong phẳng
3- Đồ thị đi lên (xuống) từ trái sang phải
4- Đồ thị nhận Oy làm trục đối xứng
- Đồ thị nhận gốc tọa độ O làm tâm đối xứng
5- Đồ thị gồm n
hững phần “giống hệt nhau”, mỗi
phần có thể xem là ảnh của một phần nào đó qua một



6- Hàm số bị chặn trên trong (a;b) bởi số M.

- Hàm số bị chặn dưới trong (a;b) bởi số m.
- Hàm số bị chặn.
7- Hàm số liên tục trong khoảng (a;b)

phép tịnh tiến.
6- Đồ thị trong khoảng đó nằm dưới đường thẳng y =
M.
- Đồ thị trong khoảng đó nằm dưới đường thẳng y =
m.
- Đồ thị hàm số nằm trong phần mặt phẳng giới hạn
bởi các đường
thẳng y = M và y = m.
7- Đồ thị mà một đường cong liền nét trong (a;b).
….
Ngược lại từ biểu thức giải tích ta cũng có thể suy ra tính lồi lõm, điểm uốn, dáng điệu của đồ thị, …
2 Luận văn của Bùi Anh Tuấn
 Hàm số biểu diễn sự phụ thuộc của những đại lượng biến thiên này đối với những đại lượng biến
thiên khác. Từ “đại lượng” được hiểu chung là phần tử của một tập hợp bất kì.
 Đặc trưng cơ bản của đồ thị là đư
ờng cong dùng biểu diễn đồ thị phải thỏa mãn tính chất : cắt
những đường thẳng cùng phương trục Oy tại không quá một điểm.
 Để “dựng đồ thị hàm số” có ba kĩ thuật :
1. Dùng công cụ của giải tích để khảo sát hàm số, sau đó dựng đồ thị.
2. Dựng một phần đồ thị, sau đó dùng các phé
p biến đổi (tịnh tiến, song song, kéo dãn ra, nén co lại,
biến đổi đối xứng) để dựng toàn bộ phần còn lại của đồ thị.
3. Dựa vào đồ thị một hàm số khác, dùng các phép biến hình để dựng đồ thị hàm số đã cho.
3 Kết luận
Chúng tôi sẽ tóm tắt lại dưới đây những điểm chính rút ra được từ tổng hợp trên.
- Đồ thị là một phương tiện biểu diễn thể hiện rõ 3 đặc trưng cơ bản của hàm số (phụ thuộc,
tương ứng, biến t
hiên). Khi hàm số xác định bởi biểu thức y = f(x) thì đường cong biểu diễn hàm số
(đồ thị) cắt những đường thẳng cùng phương với trục Oy tại không quá một điểm.
- Tính chất của đồ thị đư
ợc suy ra từ tính chất của hàm số. Ngược lại, các đặc trưng của hàm số
đều được thể hiện trên đồ thị nên qua đồ thị, ta cũng có thể thấy lại một số tính chất của hàm số ứng
với nó.
Phương pháp đồ thị thực chất là một biến thể của phương pháp bảng. Thay vì cho một bảng số
liệu, người ta cho một tập hợp điểm
trong mặt phẳng tọa độ vuông góc (tức là mặt phẳng với hệ tọa độ
Descartes), và hàm số f được xác định bởi phép cho tương ứng hoành độ của mỗi điểm (trong tập điểm
đã cho) với tung độ của nó. Như vậy, trong khuôn khổ luận văn này chúng tôi sẽ quan tâm đến dạy học
khái niệm hàm số gắn với việc tích hợp hai cách biểu diễn bằng đồ thị và bằng biểu thức giải tích.

Trong luận văn của Bùi Anh Tuấn đưa ra 3 kĩ thuật để “dựng đồ thị hàm số”, thực chất là vẽ
thông qua khảo sát. Phương pháp này giúp cho việc vẽ đồ thị thủ công một cách dễ dàng. Tuy nhiên,
lớp hàm mà người ta có thể vẽ được đồ thị theo phương pháp này không phải là rộng, và để tiến hành
người vẽ phải nắm được những kiến thức cơ bản về khảo sát hàm số (kiến t
hức Toán 12). Vậy trước
khi có được những kiến thức này, việc dạy học khái niệm hàm số được tiến hành như thế nào ?
Với nhận xét rằng một đường cong bình thường luôn có thể xấp xỉ được bằng đường gấp khúc
nhỏ, đường gấp khúc này hoàn toàn được xác định bởi các điểm đỉnh, phương pháp vẽ trực tiếp đồ thị
của hàm số (không cần kiến t
hức về khảo sát hàm số). Tuy vậy phương pháp này nếu thực hiện một
cách thủ công sẽ rất vất vả, nhưng đối với máy tính thì điều này trở nên rất dễ dàng, và trên thực tế với
sự trợ giúp của máy tính người ta vẽ được các đồ thị với độ chính xác cao tùy ý (bằng mắt thường
không thể biết được đó chỉ là một hình ảnh xấp xỉ).
Và khi việc tính toán trên máy tính trở nê
n phổ biến thì phương pháp vẽ thông qua khảo sát chỉ
còn là phương tiện để củng cố kiến thức lý thuyết về khảo sát hàm số.

CHƯƠNG 2 : QUAN HỆ THỂ CHẾ VỚI KHÁI NIỆM HÀM SỐ VÀ SỰ TÍCH
HỢP NHIỀU CÁCH BIỂU DIỄN HÀM SỐ

Mở đầu
Chúng tôi chọn phân tích bộ SGK lớp 7, lớp 9 và lớp 10 theo chương trình cơ bản, theo chủ đề hàm
số và các cách biểu diễn hàm số. Tài liệu phân tích:
+ SGK Toán 7 (tập 1, 2), Phan Đức Chính (tổng chủ biên), Tôn Thân (chủ biên), 2004, NXBGD
+ SBT Toán 7 (tập 1, 2), Tôn Thân (chủ biên), 2004, NXBGD
+ SGK Toán 9 (tập 1, 2), Phan Đức Chính (tổng chủ biên), Tôn Thân (chủ biên), 2005, NXBGD
+ SBT Toán 9 (tập 1, 2), Tôn Thân (chủ biên), 2005, NXBGD
+ SGK Đại số 10, Trần Văn Hạo (tổng chủ biên), Vũ Tuấn (chủ biên), 2006, NXBGD.
+ SBT Đại số 10, Vũ Tuấn (chủ biên), 2006, NXBGD.

+ Các SGV dùng kèm với bộ SGK trên
+ Trong phần phân tích dưới đây có sử dụng lại các kết quả phân tích được trình bày trong luận văn
của thạc sĩ Bùi Thị Ngát.
Mục đích phân tích
- Tìm hiểu con đường hình thành khái niệm hàm số trong chương trình phổ thông Việt Nam (trải qua
ba cấp lớp 7, 9, 10). Cụ thể :
+ Trong chương trình, SGK toán phổ thông trình bày khái niệm hàm số như thế nào ?
+ Có hay không sự tích hợp nhiều cách biểu diễn hàm số ?
+ Việc trình bày như vậy đem lại những thuận lợi và khó khăn gì ?

I. Phân tích chương t
rình
1. Lớp 7 :
* Phân phối chương trình :
Bài 5. Hàm số (1 tiết). Luyện tập (1 tiết)
Bài 7. Đồ thị của hàm số y = ax (a  0) (1 tiết). Luyện tập (2 tiết)
* Bài 5 : Hàm số

SGV trang 69, đã lưu ý ”Hàm số là một khái niệm khó, HS sẽ còn tiếp tục nghiên cứu ở các lớp trên
nên GV chỉ cần làm cho HS đạt được các mục tiêu”
Với lưu ý như vậy, SGV trang 69, mục tiêu của bài được đề ra như sau :
”Học xong bài này HS cần phải :
- Biết được khái niệm hàm số
- Nhận biết được đại lượng này có phải là hàm số của đại lượng kia hay không trong những cách cho (bằng bảng, bằng
công thức) cụ thể và đơn giản
- Tìm được giá trị tương ứng của hàm số khi biết giá trị của biến số.”
Để làm rõ mục tiêu trên, SGV trang 69 đã lưu ý :
” để đại lượng y là hàm số của đại lượng x cần có ba điều kiện sau :
1. Các đại lượng x và y đều nhận các giá trị số.
2. Đại lượng y phụ thuộc vào đại lượng x.
3. Với mỗi giá trị của x luôn tìm được giá trị tương ứng duy nhất của đại lượng y.”
Như vậy, chương trình qui định đại lượng ’y’ là hàm số của đại lượng ’x’; y ”phụ thuộc” vào x và
có sự ”tương ứng duy nhất” mỗi giá trị x với giá trị của y.
Trong trường hợp hàm hằng, SGV trang 69 đã giải thích nghĩa của ”phụ thuộc” như sau
:”[…] sự phụ
thuộc thể hiện ở chỗ : với mỗi giá trị của x ta đều xác định được một giá trị của y”
Trong phần gợi ý dạy học, SGV trang 70, đã trình bày :
”[ ] có hai loại đại lượng biến thiên (thay đổi) ; trong đó một đại lượng thay đổi phụ thuộc vào sự thay đổi của đại lượng
kia. Khi đó, nếu thêm điều kiện ”giá trị tương ứng duy nhất” của đại lượng phụ thuộc thì đại lương đó là hàm số của đại
lượng kia”.
Tóm lại, tuy xác định khái niệm hàm số là một khái niệm khó nhưng chương trình Toán 7 vẫn
yêu cầu làm rõ cả ba đặc trưng ”tương ứng, phụ thuộc và biến thiên”. Hơn nữa, chương trình cũng chỉ
đề cập đến hai cách biểu diễn hàm số bằng bảng và bằng biểu thức giải tích; kĩ năng ”tính” là một
trong ba mục tiêu của bài để giúp HS nhận biết khái niệm một cách trực quan và dễ dàng hơn.
* Bài 7 : Đồ thị của hàm số y = ax (a  0 )
SG
V trang 73 :
”Học xong bài này, HS cần phải :
- Hiểu được khái niệm đồ thị của hàm số, đồ thị của hàm số y = ax
- Biết được ý nghĩa của đồ thị trong thực tiễn và trong nghiên cứu hàm số.
- Biết cách vẽ đồ thị hàm số y = ax”
Để ”hiểu được khái niệm đồ thị ”,
SGV trang 73 lưu ý GV phải làm rõ cho HS thấy : ”Đồ thị hàm số có
thể là một số điểm rời rạc ”
Cũng trong phần này SGV đề cập :
” + Trong toán học (chương trình toán phổ thông), đồ thị của hàm số được cho bởi công thức thường là các đường (vô số
điểm), nên ta cần phải biết hình dạng đồ thị của mỗi hàm số cụ thể. (Ví dụ : đồ thị của hàm số y = ax là một đường thẳng
đi qua gốc toạ độ, đồ thị của hàm số y =
x
a
là một đường cong gọi là hyperbol, ). Vì vậy HS cần nhớ rõ hình dạng đồ
thị của các hàm số sẽ được học.
+ Trong thực tiễn, người ta thường chỉ vẽ một số điểm đặc biệt rồi nối lại với nhau để xem xét hình dạng của nó (chẳng
hạn, bác sĩ theo dõi bệnh nhân chỉ đo nhiệt độ cơ thể của bệnh nhân mỗi ngày 1, 2 lần rồi nối các điểm lại với nhau sẽ có
được đồ thị gần đúng
của diễn biến nhiệt độ cơ thể của bệnh nhân theo thời gian) ”
Từ những gì được trình bày ở trên ta rút ra được rằng :
- Hình dạng đồ thị hàm số gắn với 1 dạng biểu thức giải tích biểu diễn hàm số nhất định, có thể chỉ
bao gồm những điểm rời rạc. Như vậy chương trình không trình bày đồ thị với tư cách là một cách
biểu diễn hàm số, điều này có thể dẫn đến sai lầm cho HS : ’tập hợp những điểm rời rạc là đồ thị của
một hàm số’ (được trình bày trong thực nghiệm A)

- Khái niệm đồ thị hàm số xuất phát từ thực tiễn, chương trình đưa ra một qui tắc hợp đồng : ’vẽ đồ
thị hàm số là vẽ một số điểm đặc biệt rồi nối chúng lại với nhau’ được các lớp trên (lớp 9, 10) chấp
nhận và sử dụng
2. Lớp 9 :
* Phân p
hối chương trình :
- SGK toán 9 (tập 1)
Chương II : Hàm số bậc nhất
Bài 1 : Nhắc lại và bổ sung các khái niệm về hàm số (1 tiết). Luyện tập (1 tiết)
Bài 2 : Hàm số bậc nhất (1 tiết). Luyện tập (1 tiết)
Bài 3 : Đồ thị của hàm số y = ax + b (a  0) (1 tiết). Luyện tập (1 tiết)
Bài 4 : Đường thẳng song song và đường thẳng cắt nhau (1 tiết). Luyện tập (1 tiết)
Bài 5 : Hệ số góc của đường t
hẳng y = ax + b (a  0) (1 tiết). Luyện tập (1 tiết)
- SGK toán 9 (tập 2)
Chương IV : Hàm số y = ax
2
(a  0) _ Phương trình bậc hai một ẩn
Bài 1 : Hàm số y = ax
2
(a  0) (1 tiết)
Bài 2 : Đồ thị của hàm số y = ax
2
(1 tiết). Luyện tập (1 tiết)
* (tập 1)
SGV trang 52 lưu ý như sau :

Không có nhận xét nào:

Đăng nhận xét